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Abstract. The random-cluster expansion of the n-state Potts model can be understood as 
an interacting percolation problem: 'cluster-weighted bond percolation'. This interpretation 
explains the phase transition in the Potts model as a percolation transition, and it also 
suggests several generalisations. We employ a position space renormalisation group to 
calculate the transition temperature and the critical exponents. 

1. Introduction 

It is well known that the partition function of the n-state Potts model can be expanded 
in a sum over all possible graphs on the lattice (see Wu 1982 and references therein): 

Z =  C nCub 
configs 

where b is the number of occupied bonds and c is the number of clusters in the graph. 
Kasteleyn and Fortuin (1969) found that (1.1) describes bond percolation in the n + 1 
limit. In this paper we consider (1.1) for arbitrary n from the point of view that it 
describes an interacting percolation problem. Since the difference from ordinary bond 
percolation is that each cluster has acquired a fugacity n, we propose to name this 
problem 'cluster-weighted (cw) bond percolation'. The reason for introducing a new 
name for this particular form of the old Potts model is threefold. First, the name 
emphasises that we are dealing with a percolation problem, which is characterised by 
some percolation threshold, some connectedness length, an infinite fractal cluster, etc. 
We will show in D 2 that all these aspects of c w  percolation are intimately related to 
the critical behaviour of the Potts model, just as they are when n = 1. This point of 
view does not lead to any new knowledge in itself, but it may offer new insights into 
the old problem. 

Second, the graph expansion can be generalised in a number of ways which are 
not obvious from the Potts model. Some of these variations may not even possess a 
Hamiltonian formulation. One such generalisation, c w  site percolation, is considered 
in this paper. 

Third and finally, the c w  percolation problem is amenable to treatment with 
renormalisation group ( RG) tools, developed for percolation and similar problems. 
Most RG methods rely on the existence of a Hamiltonian formulation of the 
problem. This is true in particular for field-theoretic methods (Priest and Lubensky 
1976, Amit 1976), the Migdal-Kadanoff RG (Migdal 1976, Kadanoff 1976, Andelman 
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and Berker 1981), etc. One of the major advantages of the connection between 
percolation and the Potts model has been that these tools have been available for 
percolation as well. On the other hand, Reynolds et a1 (1977, 1978) have devised a 
position space RG (PSRG) for percolation directly, without reference to the Potts model. 
This PSRG method has been reviewed by Stanley et a1 (1982). It has become very 
popular because of its conceptual simplicity, and also because it is capable of producing 
quite accurate numbers. In § 3 we show how to extend this method to treat cw  
percolation, and thus also the Potts model. This is the main objective in this paper. 
Finally, in § 4 we discuss the feasibility of this approach and a number of generalisations. 

2. Aspects of cw percolation 

2.1. Equivalence between 'cluster-weighted percolation' and the n-state Potts model 

Consider an n-state Potts model in a magnetic field on an arbitrary lattice. The negative 
of the Hamiltonian, in units of kBT, is 

L 

The partition function can be expanded in a sum over all possible graphs on this lattice: 

Z = T r  exp(-X) = u b  n [exp(hs,)+ n - 13 (2.2) 
{U} configs c 

where b is the number of occupied bonds, U = exp(J) - 1 is the weight of such a bond, 
and s, is the number of sites in the cluster c. The unoccupied links are given a fugacity 
of one. This is of course purely conventional. Indeed, with x = uy and y arbitrary, Z 
can be rewritten as 

z = y - N  ~ ~ y ~ - ~  n [exp( hs,) + n - I]. (2.3) 
configs C 

In (2.3), x is the fugacity of occupied bonds and y is the fugacity of empty ones. In 
ordinary percolation, it is convenient to choose y = 1 - x, so x can be interpreted as 
the occupation probability of a bond. However, in this section we will adhere to the 
notation in (2.2). Following Wu (1982), we can now introduce 

a 
a n  C 

Gn(J, h )  N-I-  In Z = N-' ([exp(hs,) + n - I]-'). 

Clearly, in the limit n + 1,  (2.4) reduces to 

G,(J, h )  = N-' (exp( -hsc) )  
C 

(2.4) 

from which we can deduce the quantities of interest in percolation. However, we can 
also consider derivatives of G, with respect to h for arbitrary n, e.g. 

(s ) 
n2 

G ( J, h ) = - N - ' E ( P, ( U ) - 1 )/ n '. (2.60) 

2 - n  2 - 2 - n  
n2 n 

G:(J, h )  = N-' C -( s,) = 7 S,( U). (2.6b) 
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P, , (u)  and &(U) are the generalisations of the corresponding quantities in ordinary 
percolation, i.e. P,, is the probability of a site chosen at random to belong to the infinite 
cluster, and S,, is the mean cluster size. Their singularities are determined by the Potts 
critical exponents p and 7, respectively, which is obvious from their definition in terms 
of the Potts model. More interestingly, the critical coupling of the Potts model 
corresponds exactly to the percolation weight of cw  bond percolation, U, = exp(Jc) - 1 .  
This is easily seen from (2.6). The probability of belonging to the infinite cluster and 
the spontaneous magnetisation are singular simultaneously. Also, the mean cluster 
size diverges when the Potts susceptibility does so. This implies that, provided there 
is only one critical point in the Potts model, it must be connected with the appearance 
of an infinite cluster in the diagrammatical expansion. 

2.2. Fractal dimensionality of the injinite cluster 

We can further exploit the percolation analogy to find a geometrical interpretation of 
the magnetic scaling power yh. In terms of the usual critical exponents, yh = ( p  + y)/ v. 
In the n = 1 case, yh is known to equal the fractal dimensionality of the incipient 
infinite of ordinary percolation (Stanley 1977, Kirkpatrick 1978, Stanley and Coniglio 
1983-the standard text on fractals is Mandelbrot (1982)). Analogously, the magnetic 
exponent of the n-state Potts model may be interpreted as the fractal dimension of 
the infinite cluster in the corresponding c w  percolation problem. 

Before we show this, we first need to generate a typical cw  percolation graph. This 
is not as easy as in ordinary percolation, because of the long-range interaction caused 
by the cluster fugacity. Instead, we can imagine a two-step process. 

( 1 )  Generate all possible graphs on the (finite but large) lattice. To every graph 
we assign a weight ubnc. 

(2) Pick a graph at random from this sample, with a probability proportional to 
its weight. If U = uc,  the typical configuration so generated has large clusters charac- 
terised by a fractal dimensionality yh, which we now proceed to show. To this end, 
we can copy the arguments of Stanley and Coniglio (1983) more or less verbatim. 

We assume the usual scaling ansatz for the singular part of the generating function 
G, of (2.4): 

G,,(E, h )  = h - d G , , ( h Y i ~ ,  AYhh) (2.7) 
where 

J-J, U - U ~  
& =  - I Jc l=ld 

Choose rescaling factor so that h’ts = 1 .  Then 

G,, ( E, h )/ E d / y c  = G,, ( 1, &-yh/Ylh) ZE f (s* h ). 

Here the variable s* = ~ - ~ h / ~ [ ,  which is conjugate to the magnetic field h, will be 
interpreted as a typical size of scaling clusters. Since the only relevant length scale in 
the problem is the correlation length 6, it must be the linear dimension of the largest 
clusters present. Since the correlation length is proportional to ~ - ~ / ~ t  close to criticality, 
we have 

From this relation it immediately follows that D = yh. 
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2.3. c w  percolation versus ‘droplets’ 

cw percolation gives a tangible geometrical interpretation of the magnetic scaling 
power Y h  for arbitrary n. A different formulation was put forward by Coniglio and 
Klein (1980). They considered ‘droplets’ in the Ising model. These droplets are 
constructed from adjacent up spins, connected by ‘active bonds’, each bond being 
‘active’ with probability pB = 1 - exp( -2JISing). The idea behind this is to remove the 
superficial correlations that are already present at infinite temperatures. JIsing is the 
coupling constant in the Ising model. In terms of the Potts interaction strength 
J, JIsing = J/2. Therefore, the activation probability can be expressed as pB = 
1 - exp( - J ) ,  which means that pB satisfies the equation 

P B = ~ ( ~ - P B )  (2.10) 

where U is the weight of a bond in cw percolation. 
This similarity leads us to suspect that there is some close connection between c w  

percolation and the droplet picture. Indeed, droplets can be viewed as a simulation 
of a typical term in the graph expansion. To show this, we recall that the partition 
function can be written as 

(2.11) 

If we view this expression as a recipe to simulate the graph expansion, pB is the 
probability of putting a bond between two neighbours, while the trace over spins is 
simulated by thermal equilibrium. But this is exactly what the Coniglio-Klein droplets 
are doing. Hence, it is not surprising that they have the same fractal dimension as the 
infinite percolation cluster in the graph expansion. 

To use droplets is probably the only viable way to attack cw percolation with direct 
simulation. In contrast, the exact enumeration method outlined in the previous subsec- 
tion is totally inadequate for practical purposes, although it gives a conceptual basis. 

2.4. Cluster-weighted site percolation 

Apart from being a convenient setting for the interpretation of the magnetic scaling 
power in the Potts model, the diagrammatical expansion also suggests some new 
generalisations. One such generalisation of the Potts model is ‘cluster-weighted site 
percolation’. This problem can be defined by a partition function 

Z =  C uSnC 
configs 

(2.12) 

Here the basic quantities which might be occupied or not are the sites of a regular 
lattice; s is the number of such occupied sites in the configuration and c is the cluster 
number. Two sites are defined as belonging to the same cluster if there is a path of 
adjacent occupied sites which joins them. Ordinary site and bond percolation, with 
n = 1,  are believed to belong to the same universality class. This is not true for the 
c w  counterparts with the same n # 1,  due to different ways of counting clusters. In 
particular, the n + 0 limit of (2.12) is the generating function for site lattice animals 
(differentiate (2.12) with respect to n, and only configurations with one cluster survive 
in this limit), while the n + 0 limit of ( 1 . 1 )  describes the statistics of spanning trees 
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(Wu 1982). On the other hand, we believe that a modified form of c w  bond percolation 
will lie in the same universality class as (2.12). This modified problem is also described 
by the partition function (l . l) ,  but c now stands for the number of ‘bond clusters’, i.e. 
clusters containing at least one occupied bond. Hence, isolated sites are not considered 
to be clusters in this model. We will refer to the modified problem as c w  bond 
percolation of type 11, while the Potts model gives rise to type I c w  bond percolation. 
The n + 0 limit of the type I1 model describes the statistics of bond lattice animals, so 
at least when n = 0 and n = 1 this model should have the same critical behaviour as 
the site version. 

3. Position space renormalisation group 

We now want to apply PSRG techniques to calculate critical exponents for cw  percola- 
tion. Previously, most RG calculations have been concerned with the Hamiltonian 
formulation of ,the problem; this is particularly true for field-theoretical methods. On 
the other hand, Reynolds et a1 (1977, 1978) have developed a very physical large-cell 
RG for percolation, without reference to the Potts model. We extend this method to 
treat type I c w  bond percolation, and thus also the n-state Potts model. 

First we redefine the partition function (1.1) so that only the singular part remains: 

z =  ncxbyN-b .  
wnfigs 

Thus, compared to (2.3), an analytic factor has been dropped. Now consider a A x A 
cell, like the one in figure 1. We generate all possible configurations of b occupied 
and N - b empty bonds on this cell, and give each configuration a weight according 
to (3.1). Here N = 2A2 - A is the total number of links in the cell (the A links on the 
extreme right were discarded, since they do not affect the percolation property of the 
configuration) and c is the cluster number. In calculating c, one should keep in mind 

la1 

‘hl & 
Figure 1. ( a )  A typical percolating configuration of a 3 x 3 cell. This graph gives a 
contribution to the sum in (1.1) with b = 5  and c = 5 .  (b)  A typical non-percolating 
configuration. b = 5 and c = 4. In type I1 c w  bond percolation, introduced at the end of 
5 2, the number of clusters is altered to c = 2 in both a and b. The number of percolating 
sites, as well as percolating bonds, is 4 in a Note that the open circles belong to adjacent 
cells. 
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that the open circles in figure 1 belong to adjacent cells, and hence they should not 
be counted. The renormalised weights are then defined by 

nx‘= c ncXbyN-b y )  
percolating 

configs 

( 3 . 2 ~ )  

( 3 . 2 6 )  
configs 

where a configuration is considered to percolate if there is at least one path that 
connects the upper and lower boundaries of the cell. Of course, alternative definitions 
of ‘percolating’ are conceivable, but in the infinite-cell limit they should all be 
equivalent. It should be noted that we consider the cluster weight n to be a parameter 
rather than a variable, so n is left unchanged by the RG transformation. This is in 
accordance with the experience that the Potts model for each n has different exponents, 
and hence there is one fixed point for each n. 

Explicitly, in the case A = 2 ,  the right-hand members of ( 3 . 2 )  become 

R 2 ( x ,  y )  = n ( 8 x 4 y 2 + 6 x 5 y + x 6 )  + n 2 ( 8 x 3 y 4 +  5 x 4 y 2 ) +  n 3 ( 2 x 2 y 4 + 2 x 3 y 3 )  

Q 2 (  x, y )  = n(4x3y3 + x4y2) + n2(6x2y4 + 4x3y3 + x4y2) 

( 3 . 3 u )  

+ n 3 ( 4 x y s + 6 x 2 y 4 + 2 x 3 y 3 ) +  n 4 ( y 6 + 2 x y S + x 2 y 4 ) .  ( 3 . 3 b )  

If we set x = 1 - y  = p  and n = 1 ,  ( 3 . 3 ~ )  reduces to ( 1 2 )  of Reynolds er a1 (1977). 
We performed RG transformations from cells of linear size two and three, as well 

as a cell-&-cell transformation from A = 3 to A = 2.  Subsequently, we will denote an 
RG transformation from a cell of size A 2  to a cell of size A I  < A 2  by a ‘ A 2 / h l  transforma- 
tion’. In particular, cell-to-bond transformations have A I  = 1 .  

The critical fugacity and the thermal scaling power follow as usual from the recursion 
relation ( 3 . 2 ) .  In figure 2,  we show how the location of the critical fixed point ( x * ,  y * ) ,  
from the 3 / 2  transformation depends on n. For all n, there is also a dilute fixed point 
at ( x ,  y )  = (0, l ) ,  a low-temperature fixed point at (1,O) and an additional, stable, 

10-4 

Y 

0 5 -  

+ I T 
0 0 5  10  

Y 

Figure 2. Critical fixed points in the xy plane for c w  bond percolation, obtained from a 
3/2 transformation. The fixed points (1 ,  O), (0, 1 )  and (0,O) are also indicated, as well as 
the line y = 1 - x. Note that the critical fixed point only lies on this line when n = 1. 
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fixed point in the origin. It is interesting to observe that when n = 1 the RG picks out 
a fixed point on the line y = 1 - x. Therefore it is natural to identify x with the occupation 
probability in the special case. For other values of n, such an interpretation is incorrect. 

It is not necessary to consider a two-parameter RG. In fact, dividing ( 3 . 2 ~ )  by 
(3.26), we find the following recursion relation for the variable U = x / y :  

u ' = R A ( u ,  ~ ) / Q A ( u ,  1 ) .  (3.4) 

In figure 3, we have plotted the fixed point U* = x * / y *  as a function of n. The results 
are compared to the exactly known critical point of the Potts model on a square lattice, 
U = = &  (Wu 1982). When n = 1, the exact value U ,  = 1 is reproduced by duality. For 
other n the agreement is not very good, and especially the non-analyticity at n = 0 is 
not obtained by the RG. However, the 3/2 transformation yields a clear improvement 
over the 2/ 1 transformation, indicating that larger cells produce better results. 

0 1 2 3 4 5 
n 

Figure 3. Fixed point U* = x * / y *  for c w  bond percolation. Curve A: 2/1 transformation. 
Curve B: 3 /2  transformation. Curve C: exact. 

Because we have constructed a two-parameter RG, there will be two thermal 
eigenvalue exponents. The minor of these we identify with the thermal exponent of 
the Potts model, y, = v-'; this is also precisely the same exponent as the one-parameter 
RG (3.4) yields. The major exponent turns out to be independent of n. Specifically, 
the latter exponent equals In 6/ln 2 = 2.5850, In 15/ln 3 = 2.4650, and In $/ln $ = 2.2599, 
for 2/1, 3/1 and 3/2 transformations respectively. y ,  is plotted as a function of n in 
figure 4. Again, comparison with the exact result is not favourable except in an 
intermediate regime, but larger cells produce better results. Also, we found no signs 
of the first-order transition above n = 4, although y ,  kept increasing with n. 

We now proceed to obtain the magnetic scaling power, which by P 2 equals the 
fractal dimensionality D of the critical percolation cluster. One of the main properties 
of D is that it determines the mass of a cluster within a region of linear dimension R.  
In the PSRG approach, we can tentatively identify R with the cell size A. If we then 
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Figure 4. Thermal exponent y, = v-'. Curve A: 2/1 transformation. Curve B: 3/2 transfor- 
mation. Curve C: exact. 

assign unit mass to each site in the percolating cluster(s), we have 

(s)A= percolating c sncxbyN-b( percolating ncxbyN-b )-'d (3.5) 
configs configs 

where s is the number of sites in the percolating cluster, and the sum only encompasses 
percolating configurations. The expression is evaluated at the fixed point. Note that 
the denominator in (3 .5)  equals the renormalised weight x',  and thus also x at the 
fixed point. Introducing the function 

s,(x, y )  E sncxbyN-b  
percolating 

configs 

our estimate for the fractal dimension follows from 

y * )  D 

($) =SA,(X*,y*)'  

(3.6) 

(3.7) 

One can easily convince oneself that Sl(x ,  y )  = nx, while we find the following explicit 
expression when n = 2: 

S2(x, y )  = n(32x4y2+24x5y+4x6)+  n2(22x3y3+ 16x4y2)+ n3(4x2y4+4x3y3) .  (3.8) 

The fractal dimensionalities from 2 /1  and 3 / 2  transformations are plotted in figure 5 ,  
together with the exact Potts result. Again, the agreement is not particularly good, but 
it improves with increasing cell size. Also, poor agreement for small n is to be expected, 
since the approximate fixed point deviates strongly from the exact one in this range. 

Of course, we could have assigned unit weight to each bond of the spanning cluster 
instead, with essentially the same result, at least in the infinite-cell limit. However, to 
do this properly, we would also have had to account for the extreme-right bonds in 
figure 1, which would increase computing time (and cost!) with a factor 2A. Tentatively, 
we counted the number of bonds neglecting the rightmost ones, which yielded approxi- 
mately the same results as did (3.7) for small n, while the estimate for large n exceeded 
two. 
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2.0 

1.9- 

1.8- 
0 

1.7- 

1.6- 

I I I I I 

0 1 2 3 4 
n 

2391 

Figure 5. Fractal dimensionality D of the percolating cluster in cw bond percolation. 
Curve A: 2/1 transformation. Curve B: 3/2 transformation. Curve C: exact magnetic 
eigenvalue exponent. 

Finally, we also attempted to introduce ‘ghost’ bonds ri la Reynolds et a1 (1977). 
For the small cells we used in our calculations, the resulting eigenvalue exponent 
exceeded two for small and intermediate n, including n = 1, which of course is not 
acceptable. Also in this case we observed an improvement with increasing cell size, 
however. 

We also attacked c w  site percolation and type I1 c w  bond percolation with the 
same PSRG approach. In this case we do not have an exact solution to compare with, 
except that we know the critical exponents for n = 1 and that y, = 1.56 for n = 0 (lattice 
animal limit, Derrida and de S k e  1982). The calculations followed the same tracks 
as previously. Our best results are presented in figures 6-8. A comparison between 
the curves in figures 7 and 8 clearly indicates that both models belong to the same 

1 . 5 1  \, 

X 

Figure 6. Critical fixed point in xy plane for c w  site percolation, from 4/3 transformation, 
for some value of the parameter n. Fixed points at (0, l ) ,  (1 ,O)  and (0,O) are also present. 
Note that the critical fixed point intersects the line y = 1 - x at n = 1, and the line y = 1 at 
n = O .  
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-1 0 1 2 3 4 5  
n 

Figure 7. Thermal exponent yt for cw site percolation and type I 1  c w  bond percolation. 
Curve A: type I1 bond, 3/2 transformation. Curve B: site, 4/3 transformation. The crosses 
indicate exact values. 

1 .0 
-1 0 1 2 3 4 5  

n 

Figure 8. Fractal dimensionality D of the critical cluster. Curve A: type I1 c w  bond 
percolation, 3/2 transformation. Curve B: cw site percolation, 4/3 transformation. The 
crosses indicate exact values. 

universality class, as anticipated in 0 2. It is reassuring to observe that the fixed point 
is again located on the line y = 1 - x when n = 1, and also that it lies on y = 1 when 
n = O .  We extended our investigation some distance into the region of negative n. 
Although this perhaps is somewhat artificial, fixed points and critical exponents behaved 
smoothly, at least within our PSRG. It is notable that the thermal eigenvalue exceeds 
two for n d -0.19. 

4. Discussion 

We have shown how the phase transition in the Potts model may be interpreted as the 
appearance of an infinite cluster in the graph expansion, and also that the magnetic 
scaling power has an attractive interpretation as a fractal dimensionality of this infinite 
cluster. The very concrete geometric approach to the phase transition which is offered 
by the ‘cluster-weighted percolation’ picture is likely to increase our understanding of 
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the phase transition in the Potts model, and of critical phenomena in general. For 
example, we know that the n-vector model can be expanded in graphs consisting of 
all possible closed loops. In analqgy with c w  percolation, we expect that the phase 
transition in this model is accompanied by the appearance of an infinite loop. 

Recently, much attention has been given to fractal properties of percolation clusters. 
One can identify the analogous fractal sets for cw  percolation as well and ask the 
same questions, e.g. ‘Do the Alexander-Orbach (1982) or the Aharony-Stauffer (1984) 
conjectures hold?’; ‘Is the fractal dimension of the “red” bonds equal to the thermal 
scaling power of the corresponding Potts model (Coniglio 1982)?’; ‘Are there any 
scaling relations between these fractal dimensionalities (Stanley 1984) ?’, etc. We believe 
that it is important to have more models to investigate to see if the various conjectures 
are limited to ordinary percolation or if they have a broader scope. cw  percolation 
may play the role of one such ‘testing ground’, since at least type I c w  percolation 
with n = 2 and n = 3 should be amenable to a Monte Carlo simulation of Coniglio-Klein 
(1980) droplets. 

The graphical expansion was originally devised as a method to calculate high- 
temperature series. At high temperatures, the partition function is dominated by 
diagrams with few occupied links, and hence it is easy to calculate. At low temperatures, 
on the other hand, the partition function is also easy to express as an expansion in 
the number of empty bonds. But at the critical point the important diagrams are those 
with about as many occupied as empty links. This class of diagrams is huge, containing 
diagrams of all sizes and shapes, without any natural cut-off. But it is precisely such 
problems in which the RG approach is appropriate. In 9 3 we showed how to perform 
a PSRG calculation on c w  percolation. The results were qualitatively acceptable in an 
intermediate range, while our method ran into difficulties close to the non-analyticities 
at n = 0 (fiked point = 6) and n = 4 (transition to first-order behaviour). For cw site 
and type I1 cw bond percolation we apparently do not have any such problems; at 
least the fixed point behaves smoothly for all interesting n. An eventual first-order 
transition would probably not be detected in this case either. An interesting observation 
is that the bond variant comes much closer to the exactly known exponents. As a 
matter of fact, the thermal scaling power from the bond 3/2 transformation lands 
almost right onto the crosses in figure 7, in spite of the smallness of the cells. We 
cannot offer any explanation for this difference in performance, but only note its 
existence. 

One would think that the accuracy of the PSRG would be greatly enhanced if it 
were combined with a Monte Carlo simulation of the configurations in (3.2). However, 
some thought (combined with a failing attempt) indicates that this is not the case, 
except close to n = 1 .  The reason for this is that, if one generates configuration without 
taking the number of clusters into account, almost every configuration will be unimpor- 
tant. A prime example is n = 0; the only configurations which matter are the spanning 
trees, and these are (almost) never generated by occupying links at random. One could 
also conceive a Monte Carlo algorithm that updates configurations in accordance with 
the partition function (1.1). Such an algorithm will be difficult to implement, however, 
because we have long-range interactions, in the sense that the change in the number 
of clusters by breaking one particular bond may depend on whether some distant bond 
is occupied. Another disadvantage of these types of Monte Carlo simulations is that 
they would only generate the correct statistics for one particular n in each run, while 
the PSRG approach with exact cells only calculates the number of configurations with 
b bonds and c clusters once, and then profits from this work for each n. 



2394 T A  Larsson 

In conclusion, the PSRG approach outlined in this paper is not yet particularly well 
suited for quantitative numerical calculations of critical exponents. Its value lies rather 
on a semi-quantitative and conceptual plane. Approximate exponents and RG flows 
can be calculated with reasonable effort. Also, the identification of the magnetic scaling 
power with the fractal dimensionality of the percolating cluster suggests a new way to 
calculate it, investigated in this paper. 
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